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FRACTALS AND PHYSIOLOGY

Fractal characteristics:
Complex, patterned
Statistical self-similarity
Scale-invariant structure
Generated by simple 
iterative rules
1/ω2H+d spectral decay

Growth processes, biofractals

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
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Cardiovascular system

Lung

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

From Goldberger, Rigney and West

Heart
Arterial tree
Dendritic anatomy
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Fractal bones
Trabecular bone

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.
QuickTime™ and a

TIFF (LZW) decompressor
are needed to see this picture.

Courtesy F. Peyrin ESRF

µCT

CT of a vertebra
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Mammograms

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

DDSM: University of Florida

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

(Digital Database for Screening Mammography)

(Arnéodo et al., 2001)
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Brain as a biofractal

Courtesy R. Mueller ETHZ
(Bullmore, 1994)

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

1mm
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OUTLINE
Fractals in physiology 

Wavelets and fractals
Motivation for using wavelets
Fractal processing: order is the key
What about fractional differentiation

Fractional splines

Fractional wavelets

Wavelets in medical imaging
Survey of applications
Analysis of functional images
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Motivation for using wavelets

Wavelets provide basis functions
that are self-similar [Mallat, 1989]

ψi,k = 2−i / 2ψ x − 2i k
2i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

Wavelets are prime candidates for processing 
fractal-like signals and images

∀f (x) ∈ L2,   f (x) = 〈 f , ˜ ψ i,k 〉
k∈Z
∑

i∈Z
∑ ψ i,k (x)

Wavelets approximately decorrelate statistically self-similar 
processes [Flandrin, 1992; Wornell, 1993]
Unlike Fourier exponentials, wavelets are jointly localized in 
space and frequency
The basis functions themselves are fractals [Blu-Unser, 2002]
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On the fractal nature of wavelets
Harmonic spline decomposition of wavelets

Theorem: Any valid compactly supported scaling function ϕ(x)  (or wavelet ψ(x))
can be expressed either as

(1) a weighed sum of the integer shifts of a self-similar function (fractal) ;

(2) a linear combination of harmonic splines with complex exponents.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

[Blu-Unser, 2002]
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D4 as a sum of harmonic splines

QuickTime™ and a
Video decompressor

are needed to see this picture.

Sum of spline components

ϕ N (x) = γ nsn(x)
n=− N / 2

+ N / 2

∑

where

sn (x) = pk
k∈Z +

∑ (x − k)+

log λ
log 2

+ j 2πn
log 2
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Fractal processing: order is the key !

Vanishing moments
Classical Nth order transform  ⇔  analysis w avelet ˜ ψ (x)  has  N vanishing moments

 
xn ˜ ψ (x)dx = 0,   n = 0,L,N −1

x ∈R
∫

˜ ψ  kills all polynomials of degree  n < N

〈 f (x), ˜ ψ (x − u)〉 =
dN

duN φ ∗ f{ }(u)

ˆ φ (ω) = ˜ ˆ ψ ∗(ω) / jω( )N
Smoothing kernel: 

Property
An analysis wavelet of order N
acts like a Nth order differentiator:

 ˜ ˆ ψ (ω) = O(ωN ) C ⋅ ( jω)N

Multi-scale differentiation property  
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What about fractional differentiation ?

Motivation: whitening of fBM-like processes

Fractional differentiation operator

  ∂
γ f (x)       F← → ⎯       jω( )γ ˆ f (ω) γ ∈ R+

Fractional
differentiator

φ f (ω) ≈ O(1/ω 2 H +1) φw (ω) ≈ O(1)

White noise

QUESTION
Are there wavelets that act like fractional differentiators ?

ANSWER
Not within the context of standard wavelet theory where the 
order is constrained to be an integer,
but …

γ = H + 1
2
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SPLINES

Polynomial splines

Fractional B-splines

Properties
Fractional differentiation
Fractional order of approximation
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Polynomial splines (Schoenberg, 1946)

Definition:
s(x) is cardinal polynomial spline of degree n  iff

 Piecewise polynomial:
s(x) is a polynomial of degree n  in each interval [k,k + 1) ;

 Higher-order continuity:
s(x),s( 1)(x),…,s( n − 1) (x)  are continuous at the knots k .

Cubic spline (n=3)
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B-spline representation

Explici t formula :  β+
n (x) =

∆ +
n +1x+

n

n!

Cubic spline (n=3) Basis functions

Theorem [Schoenberg, 1946]
A cardinal spline of degree n has a stable, unique representation
as a linear combination of shifted B-splines

s(x) = c(k)β+
n (x − k)

k ∈Z
∑

B-splines of degree n

  

β+
n (x) = β+

0 ∗L∗β+
0

(n +1) times
1 2 4 3 4 

(x)
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Can we fractionalize splines ?

Schoenberg’s formula

β+
n(x) =

∆+
n+1x+

n

n!

?β+
α (x) =

∆+
α +1x+

α

Γ(α +1)
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Basic tools for fractionalization
Generalized factorials—Euler’s Gamma function

Generalized binomial
u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

Γ(u +1)
Γ(v +1)Γ(u − v +1)

(1+ z)γ =  
γ
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ zk

k= 0

+∞

∑

Γ(u) = xu−1e−x

0

+∞

∫ dx

Fractional derivative    [Liouvillle, 1855]

∂ s   Fourier← → ⎯ ⎯    ( jω)s

n!= Γ(n +1)

Fractional finite differences
∆+

s   Fourier← → ⎯ ⎯    (1− e− jω )s ⇒      ∆+
s f (x) = (−1)k

k= 0

+∞

∑ s
k

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ f (x − k)
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Fractional B-splines

x+
α =

xα x ≥ 0
0, otherwise

⎧ 
⎨ 
⎩ 

β+
0(x):= x+

0 − (x −1)+
0     Fourier← → ⎯ ⎯ ⎯ 

1− e− jω

jω
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

One-sided power functions:

β+
α (x):=

∆+
α +1x+

α

Γ(α +1)
       Fourier← → ⎯ ⎯ ⎯ 

1− e− jω

jω
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

α +1

  M
QuickTime™ and a

Video decompressor
are needed to see this picture.
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Symmetric B-splines

ˆ β +
α (x) =

1− e− jω

jω
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α +1

=
sin(ω /2)

ω /2

α +1

Symmetrization in Fourier domain:

 
β∗

α (x) := F −1 sin(ω /2)
ω /2

α +1⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
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Properties

Equivalence with classical B-splines

Convolution property
βα1 ∗βα2 = βα1 +α2 +1

〈βα (⋅),βα (⋅ − x)〉 = β∗
2α +1(x)

β+
α (x)   with α = n (integers)

β∗
α (x)   with α = 2n +1 (odd integers)

Compact support !

Decay

(U. & Blu, SIAM Rev, 2000)

Theorem :  For α > −1, there exists a constant C  such that  βα (x) ≤
C

x α +2 .

Generic notation : βα  for either β+
α  (causal) or  β∗

α  (symmetric)
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Riesz basis

For α > − 1
2 , there exist two constants Aα > 0  and Bα < +∞ such that

∀c ∈ l2,     Aα ⋅ c
l2

≤ c[k]βα (x − k)
k ∈Z∑

L2

≤ Bα ⋅ c
l2

β α (x − k){ }k∈Z
 is a Riesz basis for the cardinal fractional splines

Generic B-spline representation of a fractional spline

s(x) = c[k]βα (x − k)
k ∈Z
∑

Stable, one-to-one representation

Discrete representation
(digital signal)

c[k]{ }k ∈Z

Continuous-time function
(fractional spline)



22

Explicit fractional differentiation formula

Fractional derivative operators

Fractional finite difference operator:

Sketch of proof:

∂ s   Fourier← → ⎯ ⎯    ( jω)s

∂ sβ+
α (x) = ∆+

s β+
α−s(x)

∆+
s   Fourier← → ⎯ ⎯    (1− e− jω )s

∂ sβ+
α (x)   ← → ⎯   jω( )s ⋅

1− e− jω

jω
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α +1

= 1− e− jω( )s
⋅

1− e− jω

jω
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

α +1−s
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Order of approximation

Approximation space at scale a

Projection operator

Va = sa (x) = c(k)ϕ
x
a

− k⎛ 
⎝ 

⎞ 
⎠ :c(k) ∈ l2

k∈Z
∑⎧ 

⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

∀f ∈L2,     Pa f = arg min
sa ∈Va

f − sa L2
    ∈Va

Order of approximation

A scaling function ϕ  has order of approximation γ  iff

∀f ∈W2
γ ,     f − Pa f ≤ C ⋅a γ f ( γ ) = O(a γ )

DEFINITION

1 2 3 4 5

2 4

a = 1

a = 2

B-splines of degree α have order of approximation γ=α+1
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Spline reconstruction of a CAT-scan

γ =1

γ = 4

Piecewise constant

Cubic spline
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kβ+
α (x − k)

k=−10

+10

∑

α = 0

α = 1
2

α =1α = 3

Reproduction of polynomials

B-splines reproduce polynomials of degree N = α⎡ ⎤

β+
α

k ∈Z
∑ (x − k) =1

  
knβ+

α

k ∈Z
∑ (x − k) = xn + a1x

n−1 +L+ an

  M
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More fractals…

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Dali

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

Pollock

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Mandelbrot meets Mondrian
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FRACTIONAL WAVELETS

Basic ingredients

Constructing fractional wavelets

Fractional B-spline wavelets

Multi-scale fractional differentiation

Adjustable wavelet properties
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Scaling function

∀c ∈l2,    A ⋅ c 2 ≤ c(k)ϕ(x − k)
k∑ L2

2
≤ B⋅ c 2

ϕ(x / 2) = 2 h(k)ϕ(x − k)
k ∈Z
∑

ϕ(x − k ) = 1
k∈Z
∑

Two-scale relation

Partition of unity

Riesz basis condition

DEFINITION: ϕ(x)  is an admissible scaling function of L2  iff:

1 1
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From scaling functions to wavelets

Wavelet bases of L2 (Mallat-Meyer, 1989)

↓ 2

↑ 2↓ 2
si(k)

si+1 (k)

di +1(k)
↑ 2

si(k)
2 ˜ H (z−1)

2 ˜ G (z−1)

2H(z)

2G(z)

For any given admissible scaling function of L2 , ϕ(x) , there exits a wavelet

ψ(x /2) = 2 g(k)ϕ(x − k)
k ∈Z
∑

such that the family of functions
1
2i

ψ x − 2 i k
2 i

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ i∈Z ,k∈Z

forms of Riesz basis of L2 .

Constructive approach: perfect reconstruction filterbank

1 -1
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Constructing fractional wavelets

Approximation order:

Vanishing moments:

⇔

⇓

Multi-scale differentiator B-spline factorization:
ϕ = β+

γ −1 ∗ ϕ0 f − Pa f L2
= O(a γ )˜ ̂ ψ (ω) ∝ (− jω) γ ,  ω → 0 ⇔

 
xn ˜ ψ ∫ (x)dx = 0, n = 0,L γ −1⎡ ⎤

Theorem :  Let ϕ(x) be the L2-stable solution (scaling function) of the two-scale relation

ϕ(x /2) = 2 h(k)ϕ(x − k)
k ∈Z
∑

Then ϕ(x)  is of order γ  (fractional)  if and only if

  

H(z) =
1+ z−1

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

γ

spline part
1 2 4 3 4 

⋅ Q(z)
distributional part

{ with   Q(e jω ) < ∞

(Unser & Blu, IEEE-SP, 2003)

 c
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Binomial refinement filter

Two-scale relation
β+

α (x / 2) = 2 h+
α (k)β+

α (x − k)
k∈Z
∑

h+
α (k) =

1
2α +1

α +1
k

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ ← → ⎯     H α (z) =

1 + z −1

2
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

α +1

Generalized binomial filter

u
v

⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ =

Γ(u +1)
Γ(v +1)Γ(u − v +1)

Example of linear splines: α=1

1 1

2
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Fractional B-spline wavelets

QuickTime™ and a
Video decompressor

are needed to see this picture.

Remarkable property
Each of these wavelets generates a semi-orthogonal Riesz basis of L2

  

ψ+
α (x /2) =

(−1)k

2α

α +1
n

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ β∗

2α +1(n + k −1)
n

∑
g(k )

1 2 4 4 4 4 4 3 4 4 4 4 4 k ∈Z
∑ β+

α (x − k)
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FFT-based wavelet algorithm

↑ 2↓ 2

↑ 2↓ 2

H̃(z)

G̃(z)

H(z)

G(z)

x(k) x(k)

y(k)

z(k)

Filterbank algorithm

Click for demo

ψ(x /2) = 2 g(k)ϕ(x − k)
k ∈Z
∑

ϕ(x /2) = 2 h(k)ϕ(x − k)
k∈Z
∑

(Blu & Unser, ICASSP’2000)
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∆ x ∝ α +1

Adjustable wavelet properties 

Transform is tunable in a continuous fashion !
Order of differentiation: γ=α+1

Whitening of fBMs, fractals …..

Regularity
Hölder continuity: α
Sobolev: smax= α+1/2

Localization:

Wavelet
transform

f (x)

α filtering
detection
feature extraction
….
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Wavelets and the uncertainty principle

Heisenberg’s uncertainty relation

∆ x ⋅ ∆ω ≥
1
2

∆ x = min
x0

(x − x0)ψ(x)
L2

ψ L2

∆ω = min
ω0

(ω −ω0) ˆ ψ (ω)
L2

ˆ ψ 
L2

with equality iff ψ(x) = a ⋅ e−b(x−x0 )2 + jω0x

Question: are there such wavelet bases ?

ω

x

frequency

∆ x ⋅ ∆ω = Const

time or space
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Localization of the B-spline wavelets

Theorem 
The B-spline wavelets converge (in Lp -norm) to
modulated Gaussians as the degree goes to infinity :

lim
α →∞

β+
α (x){ }= C ⋅ e−(x−xα )2 / 2σ α

2

 

lim
α →∞

ψ+
α (x){ }= ′ C ⋅ e−(x− ′ x α )2 / 2 ′ σ α

2

Gaussian
1 2 4 4 3 4 4 × cos ω0x + θα( )

sinusoid
1 2 4 4 3 4 4 

σα =
α +1
12

′ σ α = B ⋅σα     with   B ≅ 2.59

(Unser et al., IEEE-IT, 1992)

α = 3
Cubic B-spline wavelets:
within 2% of the uncertainty limit !

QuickTime™ and a Video decompressor are needed to see this picture.
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Are there wavelets
in my brain ?
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WAVELETS IN MEDICAL IMAGING

Survey of applications

Analysis of functional imaging data (fMRI)
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Image processing task Application / modality Principal Authors

Image compression • MRI
• Mammograms
• CT
• Angiograms, etc…

Angelis 94; DeVore 95;
Manduca 95; Wang 96;
etc …

Image enhancement
• Digital radiograms
• MRI
• Mammograms
• Lung X-rays, CT

Laine 94, 95;
Lu, 94; Qian 95;
Guang 97;
etc …

Filtering

Denoising
• MRI
• Ultrasound (speckle)
• SPECT

Weaver 91;
Xu 94; Coifman 95;
Abdel-Malek 97; Laine 98;
Novak 98, 99

Detection of micro-calcifications
• Mammograms

Qian 95; Yoshida 94;
Strickland 96; Dhawan 96;
Baoyu 96; Heine 97; Wang 98

Texture analysis and classification
• Ultrasound
• CT, MRI
• Mammograms

Barman 93; Laine 94; Unser
95; Wei 95; Yung 95; Busch
97; Mojsilovic 97

Feature extraction

Snakes and active contours
• Ultrasound

Chuang-Kuo 96

Wavelet encoding • Magnetic resonance imaging Weaver-Healy 92;
Panych 94, 96; Geman 96;
Shimizu 96; Jian 97

Image reconstruction • Computer tomography
• Limited angle data
• Optical tomography
• PET, SPECT

Olson 93, 94; Peyrin 94;
Walnut 93; Delaney 95;
Sahiner 96; Zhu 97;
Kolaczyk 94; Raheja 99

Statistical data analysis Functional imaging
• PET
• fMRI

Ruttimann 93, 94, 98;
Unser 95; Feilner 99; Raz 99

Multi-scale Registration Motion correction
• fMRI, angiography
Multi-modality imaging
• CT, PET, MRI

Unser 93; Thévenaz 95, 98;
Kybic 99

3D visualization • CT, MRI Gross 95, 97; Muraki 95;
Kamath 98; Horbelt 99

Wavelets in medical imaging:
Survey 1991-1999

References
• Unser and Aldroubi, Proc IEEE, 1996
• Laine, Annual Rev Biomed Eng, 2000

• Special issue, IEEE Trans Med Im, 2003



QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Wavelet analysis of fMRI data



41

Functional brain imaging by fMRI

t

Time series

B

B

A

A

A

B: Rest A: Action

Basic principle: deoxygenated blood is more paramagnetic than oxygenated blood

BOLD (Blood Oxygenation Level Dependence)

EPI acquisition

Matrix size: 128 x 128 x 30 Pixels x 68 measurements
Resolution: 1.56 x 1.56 x 4 mm x 6 seconds
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Functional brain imaging by fMRI (Cont’d)

QuickTime™ and a  decompressor are needed to see this picture.

Where?

Main problems:
Small signal changes (1-5%)
Very noisy data — averaging

Standard solution
Spatial Gaussian smoothing (SPM)
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On the fractal nature of fMRI data

Log-Log plot of spectral density
Brain: courtesy Jan Kybic

X(ω) ≈ C ⋅ ω −1.466

D =1+ d − H = 2.534    with   d = 2Fractal dimension: (topological dimension)
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Wavelet analysis of fMRI

Advantages of the wavelet transform
Orthogonal transformation : white noise → white noise
Decorrelates/whitens fMRI signal 
Data compression
Increased signal-to-noise ratio (averaging effect)
Preserves space localization

Wavelet
transform

Inverse

transform

Statistical
test

(Ruttiman et al., IEEE-TMI, 1998)
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An example: auditory stimulation
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Conclusion
Fractional splines

Natural extension of Schoenberg’s polynomial splines
Stable, convenient B-spline representation
Most polynomial B-spline properties are retained 
Intimate link with fractional calculus

Elementary building blocks: Green functions of fractional derivative operators 
Efficient digital-filter-based solutions

New fractional wavelets
Multiresolution bases of L2
Fast algorithm
Tunable

Regularity
Localization
Order of differentiation

Optimal for the processing of fractal-like processes (pre-whitening)

Application in signal and image processing
Processing of fractal-like signals
Wavelet-based processing and feature extraction
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Extensions (on-going work)

Richer family: alpha-tau splines

∂τ
γ     Fourier← → ⎯ ⎯       jω( )

γ
2

+τ − jω( )
γ
2

−τ

[Blu et al., ICASSP’03]

Multi-dimensional: fractional polyharmonic splines
Polyharmonic smoothing splines

Polyharmonic wavelets

∆γ / 2     Fourier← → ⎯ ⎯       ω γ

[Tirosh et al., ICASSP’04]

[Van de Ville et al., under review]


